Probabilistic Aggregation of Classifiers for Incremental Learning
نویسندگان
چکیده
We work with a recently proposed algorithm where an ensemble of base classifiers, combined using weighted majority voting, is used for incremental classification of data. To successfully accommodate novel information without compromising previously acquired knowledge this algorithm requires an adequate strategy to determine the voting weights. Given an instance to classify, we propose to define each voting weight as the posterior probability of the corresponding hypothesis given the instance. By operating with priors and the likelihood models the obtained weights can take into account the location of the instance in the different class-specific feature spaces but also the coverage of each class k given the classifier and the quality of the learned hypothesis. This approach can provide important improvements in the generalization performance of the resulting classifier and its ability to control the stability/plasticity tradeoff. Experiments are carried out with three real classification problems already introduced to test incremental algorithms.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملProbabilistic Incremental Rule Learning
This paper describes PISCES 1.2E, a system for incremental learning of probabilistic rules. PISCES is efficiently incremental in the sense that both its processing time per instance and its memory usage are independent of the number of training instances. Classification accuracy alone does not provide a sufficient measure of performance for probabilistic classifiers. Additional measures include...
متن کاملA comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کامل